Indian Journal of Cancer
Home  ICS  Feedback Subscribe Top cited articles Login 
Users Online :1088
Small font sizeDefault font sizeIncrease font size
Navigate Here
 »   Next article
 »   Previous article
 »   Table of Contents

Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded500    
    Comments [Add]    
    Cited by others 4    

Recommend this journal


Year : 2010  |  Volume : 47  |  Issue : 3  |  Page : 260-266

Challenges in integrating 18FDG PET-CT into radiotherapy planning of head and neck cancer

1 Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, United Kingdom
2 Joint Department of Physics, The Institute of Cancer Research, Downs Road, SM2 5PT, United Kingdom
3 Head and Neck Unit, The Royal Marsden NHS Foundation trust, Granard House, Fulham Road, SW3 6JJ, London, United Kingdom

Correspondence Address:
K Newbold
Head and Neck Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT
United Kingdom
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0019-509X.64717

Rights and Permissions

Radiotherapy forms one of the major treatment modalities for head and neck cancers (HNC), and precision radiotherapy techniques, such as intensity-modulated radiotherapy require accurate target delineation to ensure success of the treatment. Conventionally used imaging modalities, such as X-ray computed tomography (CT) and magnetic resonance imaging are used to delineate the tumor. Imaging, such as positron emission tomography (PET)-CT, which combines the functional and anatomic modalities, is increasingly being used in the management of HNC. Currently, 18-fluorodeoxyglucose is the most commonly used radioisotope, which is accumulated in areas of high glucose uptake, such as the tumor tissue. Because most disease recurrences are within the high-dose radiotherapy volume, defining a biological target volume for radiotherapy boost is an attractive approach to improve the results. There are many challenges in employing the PET-CT for radiotherapy planning, such as patient positioning, target edge definition, and use of new PET tracers, which represent various functional properties, such as hypoxia, protein synthesis, and proliferation. The role of PET-CT for radiotherapy planning is ever expanding and more clinical data underlining the advantages and challenges in this approach are emerging. In this article, we review the current clinical evidence for the application of functional imaging to radiotherapy planning and discuss some of the current challenges and possible solutions that have been suggested to date.


Print this article     Email this article

  Site Map | What's new | Copyright and Disclaimer
  Online since 1st April '07
  © 2007 - Indian Journal of Cancer | Published by Wolters Kluwer - Medknow